18 research outputs found

    Energy Expenditure Evaluation in Humans and Non-Human Primates by SenseWear Armband : Validation of Energy Expenditure Evaluation by SenseWear Armband by Direct Comparison with Indirect Calorimetry

    Get PDF
    Introduction:The purpose of this study was to compare and validate the use of SenseWear Armband (SWA) placed on the arm (SWA ARM) and on the back (SWA BACK) in healthy humans during resting and a cycle-ergometer exercise and to evaluate the SWA to estimate Resting Energy Expenditure (REE) and Total Energy Expenditure (TEE) in healthy baboons.Methods:We studied 26 (15F/11M) human subjects wearing SWA in two different anatomical sites (arm and back) during resting and a cycle-ergometer test and directly compared these results with indirect calorimetry evaluation (IC), performed at the same time. We then inserted the SWA in a metabolic jacket for baboons and evaluated the TEE and REE in free living condition for 6 days in 21 (8F/13M) non-human primates.Results:In humans we found a good correlation between SWA place on the ARM and on the BACK with IC during the resting experiment (1.1\ub10.3 SWAs, 1\ub10.2 IC kcal/min) and a slight underestimation in the SWAs data compared with IC during the cycle-ergometer exercise (5\ub11.9 SWA ARM, 4.5\ub11.5 SWA BACK and 5.4\ub12.1 IC kcal/min). In the non-human primate (baboons) experiment SWA estimated a TEE of 0.54\ub10.009 kcal/min during free living and a REE of 0.82\ub10.06 kcal/min.Conclusion:SWA, an extremely simple and inexpensive apparatus, provides quite accurate measurements of energy expenditure in humans and in baboons. Energy expenditure data obtained with SWA are highly correlated with the data obtained with "gold standard", IC, in humans. \ua9 2013 Casiraghi et al

    Exenatide regulates pancreatic islet integrity and insulin sensitivity in the nonhuman primate baboon Papio hamadryas.

    Get PDF
    The glucagon-like peptide-1 receptor agonist exenatide improves glycemic control by several and not completely understood mechanisms. Herein, we examined the effects of chronic intravenous exenatide infusion on insulin sensitivity, β cell and α cell function and relative volumes, and islet cell apoptosis and replication in nondiabetic nonhuman primates (baboons). At baseline, baboons received a 2-step hyperglycemic clamp followed by an l-arginine bolus (HC/A). After HC/A, baboons underwent a partial pancreatectomy (tail removal) and received a continuous exenatide (n = 12) or saline (n = 12) infusion for 13 weeks. At the end of treatment, HC/A was repeated, and the remnant pancreas (head-body) was harvested. Insulin sensitivity increased dramatically after exenatide treatment and was accompanied by a decrease in insulin and C-peptide secretion, while the insulin secretion/insulin resistance (disposition) index increased by about 2-fold. β, α, and δ cell relative volumes in exenatide-treated baboons were significantly increased compared with saline-treated controls, primarily as the result of increased islet cell replication. Features of cellular stress and secretory dysfunction were present in islets of saline-treated baboons and absent in islets of exenatide-treated baboons. In conclusion, chronic administration of exenatide exerts proliferative and cytoprotective effects on β, α, and δ cells and produces a robust increase in insulin sensitivity in nonhuman primates

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Medical therapy of aortic aneurysms : a pathophysiology-based approach

    No full text
    One of the critical points in the pathogenesis of aortic aneurysms (AAs) is the disruption of the balance between vascular extracellular matrix (ECM) deposition and degradation. AAs are common features in some genetically determined diseases of the connective tissue, such as Marfan and Ehlers-Danlos. Acquired factors determining an enhanced inflammatory state of the arterial wall also play a key role. Previous studies have determined the role of tumor growth factor \u3b2 (TGF-\u3b2); as a principal mediator of the pathogenesis of the alterations of the arterial wall homeostasis in AAs. The medical management of any AA is mainly focused on the use of pharmacological agents that reduce hemodynamic stress of the aortic wall, since hypertension is the major risk factor for the enlargement and rupture of the AAs. However, this is far from being a comprehensive pathophysiology-based therapeutic approach. Drugs potentially able to reduce the release of TGF- \u3b2 may play a role in the pathogenesis of the AAs. They work by improving matrix repair, decreasing the proteolytic pattern and inhibition of angiotensin-converting enzyme (ACE) as well as preventing angiotensin II-induced angiotensin type-1 receptor (AT1R) activation. A new pathophysiology-based therapeutic approach, involving the mechanisms leading to the rupture of the AAs, could represent an additional tool in combination with the current established antihypertensive therapy

    The crosstalk between insulin and renin-angiotensin-aldosterone signaling systems and its effect on glucose metabolism and diabetes prevention

    No full text
    Essential hypertension is an insulin resistant state. Early insulin signaling steps are impaired in essential hypertension and a large body of data suggests that there is a crosstalk at multiple levels between the signal transduction pathways that mediate insulin and angiotensin II actions. At the extracellular level the angiotensin converting enzyme (ACE) regulates the synthesis of angiotensin II and bradykinin that is a powerful vasodilator. At early intracellular level angiotensin II acts on JAK-2/IRS1-IRS2/PI3-kinase, JNK and ERK to phosphorylate serine residues of key elements of insulin signaling pathway therefore inhibiting signaling by the insulin receptor. On another level angiotensin II inhibits the insulin signaling inducing the regulatory protein SOCS 3. Angiotensin II acting through the AT1 receptor can inhibit insulin-induced nitric oxide (NO) production by activating ERK 1/ 2 and JNK and enhances the activity of NADPH oxidase that leads to an increased reactive oxygen species generation. From the clinical standpoint, the inhibition of the renin angiotensin system improves insulin sensitivity and decreases the incidence of Type 2 Diabetes Mellitus (T2DM). This might represent an alternative approach to prevent type 2 diabetes in patients with hypertension and metabolic syndrome, (i.e. insulin resistant patients). This review will discuss: a) the molecular mechanisms of the crosstalk between the insulin and angiotensin II signaling systems b) the results of clinical studies employing drugs targeting the renin-angiotensin II-aldosterone systems and their role in glucose metabolism and diabetes prevention

    Retinol-binding protein 4 is associated with impaired glucose tolerance but not with whole body or hepatic insulin resistance in Mexican Americans

    No full text
    Retinol-binding protein-4 (RBP4), a novel protein secreted mainly by adipose tissue, has been associated with insulin resistance in obese subjects and in individuals with type 2 diabetes mellitus (T2DM). We examined the relationship between plasma RBP4 levels, expression of RBP4 in skeletal muscle and adipose tissue, and insulin sensitivity in Mexican Americans with varying degrees of obesity and glucose tolerance. Seventy-two subjects [16 lean normal-glucose-tolerant (NGT), 17 obese NGT, and 39 subjects with impaired fasting glucose/impaired glucose tolerance/T2DM] received an oral glucose tolerance test (OGTT) and euglycemic-hyperinsulinemic clamp. Insulin secretion was measured as insulinogenic index during OGTT. In a subset of subjects, hepatic glucose production was measured by 3-[3H]glucose infusion, biopsies of the vastus lateralis muscle and subcutaneous adipose tissue were obtained under basal conditions, and quantitative RT-PCR was performed to measure the RBP4 mRNA gene expression. Plasma RBP4 was significantly elevated in impaired glucose tolerance/T2DM compared with NGT lean or obese subjects. Plasma RBP4 levels correlated with 2-h glucose, triglycerides, and hemoglobin A1c. There was no association between RBP4 levels and whole body insulin sensitivity measured with either the euglycemic insulin clamp or OGTT, basal hepatic glucose production rates, and the hepatic insulin resistance index. There was no correlation between plasma RBP4 levels and indexes of insulin secretion. RBP4 mRNA expression in skeletal muscle was similar in lean NGT subjects, obese NGT subjects, and T2DM subjects. There was no difference in RBP4 mRNA expression in adipose tissue between lean and obese NGT subjects or between NGT and T2DM individuals. Plasma RBP4 levels are elevated in T2DM and associated with impaired glucose tolerance, but not associated with obesity or insulin resistance or impaired insulin secretion in Mexican Americans

    Spontaneous pathology of the baboon endocrine system

    No full text
    Background: Study of endocrine pathology in animal models is critical to understanding endocrine pathology in humans. Methods: We evaluated 434 endocrine-related diagnoses from 4619 baboon necropsies, established the incidence of spontaneous endocrine pathology, and analyzed the clinical and biochemical data associated with the individual cases. Results: The most common diagnoses in descending order, were pancreatic islet cell amyloidosis (n = 259), ovarian cysts (n = 50), pituitary adenoma (n = 37), pancreatic islet cell adenoma (n = 20), granulosa cell tumor (n = 15), thyroid adenoma (n = 11), adrenal hyperplasia (n = 10), thyroid carcinoma (n = 8), and pheochromocytoma (n = 6). The incidence of pancreatic islet cell amyloidosis progressively increased with age. Pheochromocytomas were associated with renal and heart failure. The incidence of pancreatic islet cell amyloidosis and adrenal pathology was similar to humans; the incidence of pituitary adenoma and thyroid pathology was lower than in humans. Conclusions: Endocrine disease in baboons is common and shares clinical and biochemical characteristics with endocrine disease in humans

    Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo

    No full text
    This study was undertaken to test the hypothesis that short-term exposure (4 h) to physiological hyperinsulinemia in normal, healthy subjects without a family history of diabetes would induce a low grade inflammatory response independently of glycemic status. Twelve normal glucose tolerant subjects received a 4-h euglycemic hyperinsulinemic clamp with biopsies of the vastus lateralis muscle. Microarray analysis identified 121 probe sets that were significantly altered in response to physiological hyperinsulinemia while maintaining euglycemia. In normal, healthy human subjects insulin increased the mRNAs of a number of inflammatory genes (CCL2, CXCL2 and THBD) and transcription factors (ATF3, BHLHB2, HES1, KLF10, JUNB, FOS, and FOSB). A number of other genes were upregulated in response to insulin, including RRAD, MT, and SGK. CITED2, a known coactivator of PPAR\u3b1, was significantly downregulated. SGK and CITED2 are located at chromosome 6q23, where we previously detected strong linkage to fasting plasma insulin concentrations. We independently validated the mRNA expression changes in an additional five subjects and closely paralleled the results observed in the original 12 subjects. A saline infusion in healthy, normal glucose-tolerant subjects without family history of diabetes demonstrated that the genes altered during the euglycemic hyperinsulinemic clamp were due to hyperinsulinemia and were unrelated to the biopsy procedure per se. The results of the present study demonstrate that insulin acutely regulates the levels of mRNAs involved in inflammation and transcription and identifies several candidate genes, including HES1 and BHLHB2, for further investigation

    Physiological and molecular determinants of insulin action in the baboon

    No full text
    OBJECTIVE-To quantitate insulin sensitivity in lean and obese nondiabetic baboons and examine the underlying cellular/ molecular mechanisms responsible for impaired insulin action to characterize a baboon model of insulin resistance. RESEARCH DESIGN AND METHODS-Twenty baboons received a hyperinsulinemic-euglycemic clamp with skeletal muscle and visceral adipose tissue biopsies at baseline and at 30 and 120 min after insulin. Genes and protein expression of key molecules involved in the insulin signaling cascade (insulin receptor, insulin receptor substrate-1, p85, phosphatidylinositol 3-kinase, Akt, and AS160) were sequenced, and insulin-mediated changes were analyzed. RESULTS-Overall, baboons show a wide range of insulin sensitivity (6.2 \ub1 4.8 mg \ub7 kg -1 \ub7 min -1), and there is a strong inverse correlation between indexes of adiposity and insulin sensitivity (r =-0.946, P < 0.001 for % body fat; r =-0.72, P < 0.001 for waist circumference). The genes and protein sequences analyzed were found to have 3c 98% identity to those of man. Insulin-mediated changes in key signaling molecules were impaired both in muscle and adipose tissue in obese insulin-resistant compared with lean insulin-sensitive baboons. CONCLUSIONS-The obese baboon is a pertinent nonhuman primate model to examine the underlying cellular/molecular mechanisms responsible for insulin resistance and eventual development of type 2 diabetes
    corecore